Evidence for potential dark matter objects has been detected using pulsars, which are neutron stars emitting regular beams of radio waves.
These beams were analyzed by Professor John LoSecco, revealing variations and delays that indicate the presence of unseen mass, likely dark matter. LoSecco utilized data from the PPTA2 survey, involving precise measurements from several radio telescopes. The study found around a dozen instances where dark matter likely influenced pulsar signals. This research not only helps in understanding dark matter but also improves pulsar timing data for other astronomical studies.
Detecting Dark Matter With Pulsars
Tantalizing evidence of potential dark matter objects has been detected with the help of the Universe’s ‘timekeepers’.
These pulsars – neutron stars that rotate and emit lighthouse-like beams of radio waves that rapidly sweep through space – were used to identify mysterious hidden masses.
Pulsars earned their nickname because they send out electromagnetic radiation at very regular intervals, ranging from milliseconds to seconds, making them extremely accurate timekeepers.
“Science has developed very precise methods to measure time,” said the astronomer behind the research, Professor John LoSecco, of the University of Notre Dame, who recently presented his findings at the National Astronomy Meeting at the University of Hull.
“On Earth we have atomic clocks and in space we have pulsars.
“While gravitation has been known to slow down light for more than a century, there have been very few applications so far.”